If the system of linear equations :
$$\begin{aligned} & x+y+2 z=6 \\ & 2 x+3 y+\mathrm{az}=\mathrm{a}+1 \\ & -x-3 y+\mathrm{b} z=2 \mathrm{~b} \end{aligned}$$
where $a, b \in \mathbf{R}$, has infinitely many solutions, then $7 a+3 b$ is equal to :
The sum of all values of $\theta \in[0,2 \pi]$ satisfying $2 \sin ^2 \theta=\cos 2 \theta$ and $2 \cos ^2 \theta=3 \sin \theta$ is
Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of
$$\begin{aligned} & \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\ & \alpha u+\beta v=18, \\ & \gamma u+\delta v=20, \end{aligned}$$ then $\mathrm{u+v}$ equals :
The perpendicular distance, of the line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{2}$ from the point $\mathrm{P}(2,-10,1)$, is :