The heat of solution of anhydrous $$\mathrm{CuSO}_4$$ and $$\mathrm{CuSO}_4 \cdot 5 \mathrm{H}_2 \mathrm{O}$$ are $$-70 \mathrm{~kJ} \mathrm{~mol}^{-1}$$ and $$+12 \mathrm{~kJ} \mathrm{~mol}^{-1}$$ respectively.
The heat of hydration of $$\mathrm{CuSO}_4$$ to $$\mathrm{CuSO}_4 \cdot 5 \mathrm{H}_2 \mathrm{O}$$ is $$-x \mathrm{~kJ}$$. The value of $$x$$ is ________. (nearest integer).
Molarity $$(\mathrm{M})$$ of an aqueous solution containing $$x \mathrm{~g}$$ of anhyd. $$\mathrm{CuSO}_4$$ in $$500 \mathrm{~mL}$$ solution at $$32^{\circ} \mathrm{C}$$ is $$2 \times 10^{-1} \mathrm{M}$$. Its molality will be _________ $$\times 10^{-3} \mathrm{~m}$$. (nearest integer). [Given density of the solution $$=1.25 \mathrm{~g} / \mathrm{mL}$$]
If the domain of the function $$f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$$ is $$\mathbf{R}-(\alpha, \beta)$$, then $$12 \alpha \beta$$ is equal to :
Let three vectors ,$$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+4 \hat{j}+2 \hat{k}, \overrightarrow{\mathrm{b}}=5 \hat{i}+3 \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{c}}=x \hat{i}+y \hat{j}+z \hat{k}$$ form a triangle such that $$\vec{c}=\vec{a}-\vec{b}$$ and the area of the triangle is $$5 \sqrt{6}$$. If $$\alpha$$ is a positive real number, then $$|\vec{c}|^2$$ is equal to: