If $$\vec{a}$$ and $$\vec{b}$$ makes an angle $$\cos ^{-1}\left(\frac{5}{9}\right)$$ with each other, then $$|\vec{a}+\vec{b}|=\sqrt{2}|\vec{a}-\vec{b}|$$ for $$|\vec{a}|=n|\vec{b}|$$ The integer value of $$\mathrm{n}$$ is _________.
Two persons pull a wire towards themselves. Each person exerts a force of $$200 \mathrm{~N}$$ on the wire. Young's modulus of the material of wire is $$1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$$. Original length of the wire is $$2 \mathrm{~m}$$ and the area of cross section is $$2 \mathrm{~cm}^2$$. The wire will extend in length by _________ $$\mu \mathrm{m}$$.
The position, velocity and acceleration of a particle executing simple harmonic motion are found to have magnitudes of $$4 \mathrm{~m}, 2 \mathrm{~ms}^{-1}$$ and $$16 \mathrm{~ms}^{-2}$$ at a certain instant. The amplitude of the motion is $$\sqrt{x}, \mathrm{~m}$$ where $$x$$ is _________.
A star has $$100 \%$$ helium composition. It starts to convert three $${ }^4 \mathrm{He}$$ into one $${ }^{12} \mathrm{C}$$ via triple alpha process as $${ }^4 \mathrm{He}+{ }^4 \mathrm{He}+{ }^4 \mathrm{He} \rightarrow{ }^{12} \mathrm{C}+\mathrm{Q}$$. The mass of the star is $$2.0 \times 10^{32} \mathrm{~kg}$$ and it generates energy at the rate of $$5.808 \times 10^{30} \mathrm{~W}$$. The rate of converting these $${ }^4 \mathrm{He}$$ to $${ }^{12} \mathrm{C}$$ is $$\mathrm{n} \times 10^{42} \mathrm{~s}^{-1}$$, where $$\mathrm{n}$$ is _________. [ Take, mass of $${ }^4 \mathrm{He}=4.0026 \mathrm{u}$$, mass of $${ }^{12} \mathrm{C}=12 \mathrm{u}$$]