1
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to:

A
54
B
51
C
73
D
62
2
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The parabola $$y^2=4 x$$ divides the area of the circle $$x^2+y^2=5$$ in two parts. The area of the smaller part is equal to :

A
$$\frac{2}{3}+5 \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$$
B
$$\frac{2}{3}+\sqrt{5} \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$$
C
$$\frac{1}{3}+5 \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$$
D
$$\frac{1}{3}+\sqrt{5} \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$$
3
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The solution of the differential equation $$(x^2+y^2) \mathrm{d} x-5 x y \mathrm{~d} y=0, y(1)=0$$, is :

A
$$\left|x^2-4 y^2\right|^5=x^2$$
B
$$\left|x^2-2 y^2\right|^6=x$$
C
$$\left|x^2-2 y^2\right|^5=x^2$$
D
$$\left|x^2-4 y^2\right|^6=x$$
4
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$|\cos \theta \cos (60-\theta) \cos (60+\theta)| \leq \frac{1}{8}, \theta \epsilon[0,2 \pi]$$. Then, the sum of all $$\theta \in[0,2 \pi]$$, where $$\cos 3 \theta$$ attains its maximum value, is :

A
$$6 \pi$$
B
$$9 \pi$$
C
$$18 \pi$$
D
$$15 \pi$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12