Let $$\overrightarrow{O A}=2 \vec{a}, \overrightarrow{O B}=6 \vec{a}+5 \vec{b}$$ and $$\overrightarrow{O C}=3 \vec{b}$$, where $$O$$ is the origin. If the area of the parallelogram with adjacent sides $$\overrightarrow{O A}$$ and $$\overrightarrow{O C}$$ is 15 sq. units, then the area (in sq. units) of the quadrilateral $$O A B C$$ is equal to:
Let $$A=\{2,3,6,7\}$$ and $$B=\{4,5,6,8\}$$. Let $$R$$ be a relation defined on $$A \times B$$ by $$(a_1, b_1) R(a_2, b_2)$$ if and only if $$a_1+a_2=b_1+b_2$$. Then the number of elements in $$R$$ is __________.
Let $$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^4+1}}-\frac{2 n}{\left(n^2+1\right) \sqrt{n^4+1}}+\frac{n}{\sqrt{n^4+16}}-\frac{8 n}{\left(n^2+4\right) \sqrt{n^4+16}}\right.$$ $$\left.+\ldots+\frac{n}{\sqrt{n^4+n^4}}-\frac{2 n \cdot n^2}{\left(n^2+n^2\right) \sqrt{n^4+n^4}}\right)$$ be $$\frac{\pi}{k}$$, using only the principal values of the inverse trigonometric functions. Then $$\mathrm{k}^2$$ is equal to _________.
Let $$f:(0, \pi) \rightarrow \mathbf{R}$$ be a function given by $$f(x)=\left\{\begin{array}{cc}\left(\frac{8}{7}\right)^{\frac{\tan 8 x}{\tan 7 x}}, & 0< x<\frac{\pi}{2} \\ \mathrm{a}-8, & x=\frac{\pi}{2} \\ (1+\mid \cot x)^{\frac{\mathrm{b}}{\mathrm{a}}|\tan x|}, & \frac{\pi}{2} < x < \pi\end{array}\right.$$
where $$\mathrm{a}, \mathrm{b} \in \mathbf{Z}$$. If $$f$$ is continuous at $$x=\frac{\pi}{2}$$, then $$\mathrm{a}^2+\mathrm{b}^2$$ is equal to _________.