If the sum of the series $$\frac{1}{1 \cdot(1+\mathrm{d})}+\frac{1}{(1+\mathrm{d})(1+2 \mathrm{~d})}+\ldots+\frac{1}{(1+9 \mathrm{~d})(1+10 \mathrm{~d})}$$ is equal to 5, then $$50 \mathrm{~d}$$ is equal to :
The coefficient of $$x^{70}$$ in $$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$$ is $${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$$. Then a possible value of $$\mathrm{p}+\mathrm{q}$$ is :
The frequency distribution of the age of students in a class of 40 students is given below.
Age | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|
No of Students | 5 | 8 | 5 | 12 | $$x$$ | $$y$$ |
If the mean deviation about the median is 1.25, then $$4x+5y$$ is equal to :
Let a circle passing through $$(2,0)$$ have its centre at the point $$(\mathrm{h}, \mathrm{k})$$. Let $$(x_{\mathrm{c}}, y_{\mathrm{c}})$$ be the point of intersection of the lines $$3 x+5 y=1$$ and $$(2+\mathrm{c}) x+5 \mathrm{c}^2 y=1$$. If $$\mathrm{h}=\lim _\limits{\mathrm{c} \rightarrow 1} x_{\mathrm{c}}$$ and $$\mathrm{k}=\lim _\limits{\mathrm{c} \rightarrow 1} y_{\mathrm{c}}$$, then the equation of the circle is :