Let $$\int \frac{2-\tan x}{3+\tan x} \mathrm{~d} x=\frac{1}{2}\left(\alpha x+\log _e|\beta \sin x+\gamma \cos x|\right)+C$$, where $$C$$ is the constant of integration. Then $$\alpha+\frac{\gamma}{\beta}$$ is equal to :
Let $$\alpha, \beta$$ be the roots of the equation $$x^2+2 \sqrt{2} x-1=0$$. The quadratic equation, whose roots are $$\alpha^4+\beta^4$$ and $$\frac{1}{10}(\alpha^6+\beta^6)$$, is:
Let $$f(x)=x^2+9, g(x)=\frac{x}{x-9}$$ and $$\mathrm{a}=f \circ g(10), \mathrm{b}=g \circ f(3)$$. If $$\mathrm{e}$$ and $$l$$ denote the eccentricity and the length of the latus rectum of the ellipse $$\frac{x^2}{\mathrm{a}}+\frac{y^2}{\mathrm{~b}}=1$$, then $$8 \mathrm{e}^2+l^2$$ is equal to.
The shortest distance between the lines $$\frac{x-3}{4}=\frac{y+7}{-11}=\frac{z-1}{5}$$ and $$\frac{x-5}{3}=\frac{y-9}{-6}=\frac{z+2}{1}$$ is: