A small spherical ball of radius $$r$$, falling through a viscous medium of negligible density has terminal velocity '$$v$$'. Another ball of the same mass but of radius $$2 r$$, falling through the same viscous medium will have terminal velocity:
The measured value of the length of a simple pendulum is $$20 \mathrm{~cm}$$ with $$2 \mathrm{~mm}$$ accuracy. The time for 50 oscillations was measured to be 40 seconds with 1 second resolution. From these measurements, the accuracy in the measurement of acceleration due to gravity is $$\mathrm{N} \%$$. The value of $$\mathrm{N}$$ is:
When unpolarized light is incident at an angle of $$60^{\circ}$$ on a transparent medium from air, the reflected ray is completely polarized. The angle of refraction in the medium is:
The resistance per centimeter of a meter bridge wire is $$r$$, with $$X \Omega$$ resistance in left gap. Balancing length from left end is at $$40 \mathrm{~cm}$$ with $$25 \Omega$$ resistance in right gap. Now the wire is replaced by another wire of $$2 r$$ resistance per centimeter. The new balancing length for same settings will be at