The shortest distance, between lines $$L_1$$ and $$L_2$$, where $$L_1: \frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+4}{2}$$ and $$L_2$$ is the line, passing through the points $$\mathrm{A}(-4,4,3), \mathrm{B}(-1,6,3)$$ and perpendicular to the line $$\frac{x-3}{-2}=\frac{y}{3}=\frac{z-1}{1}$$, is
The area of the region enclosed by the parabolas $$y=4 x-x^2$$ and $$3 y=(x-4)^2$$ is equal to :
Let $$f, g:(0, \infty) \rightarrow \mathbb{R}$$ be two functions defined by $$f(x)=\int\limits_{-x}^x\left(|t|-t^2\right) e^{-t^2} d t$$ and $$g(x)=\int\limits_0^{x^2} t^{1 / 2} e^{-t} d t$$. Then, the value of $$9\left(f\left(\sqrt{\log _e 9}\right)+g\left(\sqrt{\log _e 9}\right)\right)$$ is equal to :
Let $$f: \rightarrow \mathbb{R} \rightarrow(0, \infty)$$ be strictly increasing function such that $$\lim _\limits{x \rightarrow \infty} \frac{f(7 x)}{f(x)}=1$$. Then, the value of $$\lim _\limits{x \rightarrow \infty}\left[\frac{f(5 x)}{f(x)}-1\right]$$ is equal to