A coin is biased so that a head is twice as likely to occur as a tail. If the coin is tossed 3 times, then the probability of getting two tails and one head is
Let $$A$$ be a $$3 \times 3$$ real matrix such that
$$A\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right)=2\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right)=4\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right)=2\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right) \text {. }$$
Then, the system $$(A-3 I)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$$ has :
Let $$(\alpha, \beta, \gamma)$$ be the mirror image of the point $$(2,3,5)$$ in the line $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$. Then, $$2 \alpha+3 \beta+4 \gamma$$ is equal to
If $$a=\sin ^{-1}(\sin (5))$$ and $$b=\cos ^{-1}(\cos (5))$$, then $$a^2+b^2$$ is equal to