Let a variable line passing through the centre of the circle $$x^2+y^2-16 x-4 y=0$$, meet the positive co-ordinate axes at the points $$A$$ and $$B$$. Then the minimum value of $$O A+O B$$, where $$O$$ is the origin, is equal to
Let $$A(a, b), B(3,4)$$ and $$C(-6,-8)$$ respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point $$P(2 a+3,7 b+5)$$ from the line $$2 x+3 y-4=0$$ measured parallel to the line $$x-2 y-1=0$$ is
Let the mean and the variance of 6 observations $$a, b, 68,44,48,60$$ be $$55$$ and $$194$$, respectively. If $$a>b$$, then $$a+3 b$$ is
Let $$\vec{a}=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$$ and $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}) \times \vec{c}=2(\vec{a} \times \vec{b})+24 \hat{j}-6 \hat{k}$$ and $$(\vec{a}-\vec{b}+\hat{i}) \cdot \vec{c}=-3$$. Then $$|\vec{c}|^2$$ is equal to ________.