$$\left|\frac{120}{\pi^3} \int_\limits0^\pi \frac{x^2 \sin x \cos x}{\sin ^4 x+\cos ^4 x} d x\right| \text { is equal to }$$ ________.
Let $$A(-2,-1), B(1,0), C(\alpha, \beta)$$ and $$D(\gamma, \delta)$$ be the vertices of a parallelogram $$A B C D$$. If the point $$C$$ lies on $$2 x-y=5$$ and the point $$D$$ lies on $$3 x-2 y=6$$, then the value of $$|\alpha+\beta+\gamma+\delta|$$ is equal to ___________.
Let $$a, b, c$$ be the lengths of three sides of a triangle satistying the condition $$\left(a^2+b^2\right) x^2-2 b(a+c) x+\left(b^2+c^2\right)=0$$. If the set of all possible values of $$x$$ is the interval $$(\alpha, \beta)$$, then $$12\left(\alpha^2+\beta^2\right)$$ is equal to __________.
If $$\lim _\limits{x \rightarrow 0} \frac{a x^2 e^x-b \log _e(1+x)+c x e^{-x}}{x^2 \sin x}=1$$, then $$16\left(a^2+b^2+c^2\right)$$ is equal to ________.