Let $$A(a, b), B(3,4)$$ and $$C(-6,-8)$$ respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point $$P(2 a+3,7 b+5)$$ from the line $$2 x+3 y-4=0$$ measured parallel to the line $$x-2 y-1=0$$ is
Let the mean and the variance of 6 observations $$a, b, 68,44,48,60$$ be $$55$$ and $$194$$, respectively. If $$a>b$$, then $$a+3 b$$ is
Let $$\vec{a}=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$$ and $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}) \times \vec{c}=2(\vec{a} \times \vec{b})+24 \hat{j}-6 \hat{k}$$ and $$(\vec{a}-\vec{b}+\hat{i}) \cdot \vec{c}=-3$$. Then $$|\vec{c}|^2$$ is equal to ________.
Let $$y=y(x)$$ be the solution of the differential equation
$$\sec ^2 x d x+\left(e^{2 y} \tan ^2 x+\tan x\right) d y=0,0< x<\frac{\pi}{2}, y(\pi / 4)=0$$.
If $$y(\pi / 6)=\alpha$$, then $$e^{8 \alpha}$$ is equal to ____________.