Two discs of moment of inertia $$I_1=4 \mathrm{~kg} \mathrm{~m}^2$$ and $$I_2=2 \mathrm{~kg} \mathrm{~m}^2$$, about their central axes & normal to their planes, rotating with angular speeds $$10 \mathrm{~rad} / \mathrm{s}$$ & $$4 \mathrm{~rad} / \mathrm{s}$$ respectively are brought into contact face to face with their axes of rotation coincident. The loss in kinetic energy of the system in the process is _________ J.
A point source is emitting sound waves of intensity $$16 \times 10^{-8} \mathrm{~Wm}^{-2}$$ at the origin. The difference in intensity (magnitude only) at two points located at a distances of $$2 m$$ and $$4 m$$ from the origin respectively will be _________ $$\times 10^{-8} \mathrm{~Wm}^{-2}$$.
Two resistance of $$100 \Omega$$ and $$200 \Omega$$ are connected in series with a battery of $$4 \mathrm{~V}$$ and negligible internal resistance. A voltmeter is used to measure voltage across $$100 \Omega$$ resistance, which gives reading as $$1 \mathrm{~V}$$. The resistance of voltmeter must be _______ $$\Omega$$.
Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle of $$37^{\circ}$$ with each other. When suspended in a liquid of density $$0.7 \mathrm{~g} / \mathrm{cm}^3$$, the angle remains same. If density of material of the sphere is $$1.4 \mathrm{~g} / \mathrm{cm}^3$$, the dielectric constant of the liquid is _______ $$\left(\tan 37^{\circ}=\frac{3}{4}\right)$$