1
JEE Main 2024 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language

In an examination of Mathematics paper, there are 20 questions of equal marks and the question paper is divided into three sections : $$A, B$$ and $$C$$. A student is required to attempt total 15 questions taking at least 4 questions from each section. If section $$A$$ has 8 questions, section $$B$$ has 6 questions and section $$C$$ has 6 questions, then the total number of ways a student can select 15 questions is __________.

Your input ____
2
JEE Main 2024 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language

Let $$Y=Y(X)$$ be a curve lying in the first quadrant such that the area enclosed by the line $$Y-y=Y^{\prime}(x)(X-x)$$ and the co-ordinate axes, where $$(x, y)$$ is any point on the curve, is always $$\frac{-y^2}{2 Y^{\prime}(x)}+1, Y^{\prime}(x) \neq 0$$. If $$Y(1)=1$$, then $$12 Y(2)$$ equals __________.

Your input ____
3
JEE Main 2024 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language

The number of real solutions of the equation $$x\left(x^2+3|x|+5|x-1|+6|x-2|\right)=0$$ is _________.

Your input ____
4
JEE Main 2024 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language

Consider two circles $$C_1: x^2+y^2=25$$ and $$C_2:(x-\alpha)^2+y^2=16$$, where $$\alpha \in(5,9)$$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points of $$C_1$$ and $$C_2$$ be $$\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$$. If the length of common chord of $$C_1$$ and $$C_2$$ is $$\beta$$, then the value of $$(\alpha \beta)^2$$ equals _______.

Your input ____
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12