Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then
Let $$R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$$ be a non-zero $$3 \times 3$$ matrix, where $$x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$$. For a square matrix $$M$$, let trace $$(M)$$ denote the sum of all the diagonal entries of $$M$$. Then, among the statements:
(I) Trace $$(R)=0$$
(II) If trace $$(\operatorname{adj}(\operatorname{adj}(R))=0$$, then $$R$$ has exactly one non-zero entry.
If $$x^2-y^2+2 h x y+2 g x+2 f y+c=0$$ is the locus of a point, which moves such that it is always equidistant from the lines $$x+2 y+7=0$$ and $$2 x-y+8=0$$, then the value of $$g+c+h-f$$ equals
Let $$a$$ and $$b$$ be real constants such that the function $$f$$ defined by $$f(x)=\left\{\begin{array}{ll}x^2+3 x+a & , x \leq 1 \\ b x+2 & , x>1\end{array}\right.$$ be differentiable on $$\mathbb{R}$$. Then, the value of $$\int_\limits{-2}^2 f(x) d x$$ equals