1
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then

A
$$x f^{\prime}(x)+2024 f(x)=0$$
B
$$x f^{\prime}(x)-2023 f(x)=0$$
C
$$x f^{\prime}(x)-2024 f(x)=0$$
D
$$x f^{\prime}(x)+f(x)=2024$$
2
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$$ be a non-zero $$3 \times 3$$ matrix, where $$x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$$. For a square matrix $$M$$, let trace $$(M)$$ denote the sum of all the diagonal entries of $$M$$. Then, among the statements:

(I) Trace $$(R)=0$$

(II) If trace $$(\operatorname{adj}(\operatorname{adj}(R))=0$$, then $$R$$ has exactly one non-zero entry.

A
Only (I) is true
B
Only (II) is true
C
Both (I) and (II) are true
D
Neither (I) nor (II) is true
3
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$x^2-y^2+2 h x y+2 g x+2 f y+c=0$$ is the locus of a point, which moves such that it is always equidistant from the lines $$x+2 y+7=0$$ and $$2 x-y+8=0$$, then the value of $$g+c+h-f$$ equals

A
8
B
14
C
29
D
6
4
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$a$$ and $$b$$ be real constants such that the function $$f$$ defined by $$f(x)=\left\{\begin{array}{ll}x^2+3 x+a & , x \leq 1 \\ b x+2 & , x>1\end{array}\right.$$ be differentiable on $$\mathbb{R}$$. Then, the value of $$\int_\limits{-2}^2 f(x) d x$$ equals

A
21
B
19/6
C
17
D
15/6
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12