For $$\alpha, \beta \in(0, \pi / 2)$$, let $$3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)$$ and a real number $$k$$ be such that $$\tan \alpha=k \tan \beta$$. Then, the value of $$k$$ is equal to
If $$z$$ is a complex number, then the number of common roots of the equations $$z^{1985}+z^{100}+1=0$$ and $$z^3+2 z^2+2 z+1=0$$, is equal to
Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then
Let $$R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$$ be a non-zero $$3 \times 3$$ matrix, where $$x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$$. For a square matrix $$M$$, let trace $$(M)$$ denote the sum of all the diagonal entries of $$M$$. Then, among the statements:
(I) Trace $$(R)=0$$
(II) If trace $$(\operatorname{adj}(\operatorname{adj}(R))=0$$, then $$R$$ has exactly one non-zero entry.