Let $$L_1: \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in \mathbb{R}$$,
$$L_2: \vec{r}=(\hat{j}-\hat{k})+\mu(3 \hat{i}+\hat{j}+p \hat{k}), \mu \in \mathbb{R} \text {, and } L_3: \vec{r}=\delta(\ell \hat{i}+m \hat{j}+n \hat{k}), \delta \in \mathbb{R}$$
be three lines such that $$L_1$$ is perpendicular to $$L_2$$ and $$L_3$$ is perpendicular to both $$L_1$$ and $$L_2$$. Then, the point which lies on $$L_3$$ is
Let $$\vec{a}=\hat{i}+\alpha \hat{j}+\beta \hat{k}, \alpha, \beta \in \mathbb{R}$$. Let a vector $$\vec{b}$$ be such that the angle between $$\vec{a}$$ and $$\vec{b}$$ is $$\frac{\pi}{4}$$ and $$|\vec{b}|^2=6$$. If $$\vec{a} \cdot \vec{b}=3 \sqrt{2}$$, then the value of $$\left(\alpha^2+\beta^2\right)|\vec{a} \times \vec{b}|^2$$ is equal to
Let $$P$$ be a point on the hyperbola $$H: \frac{x^2}{9}-\frac{y^2}{4}=1$$, in the first quadrant such that the area of triangle formed by $$P$$ and the two foci of $$H$$ is $$2 \sqrt{13}$$. Then, the square of the distance of $$P$$ from the origin is
Let $$f(x)=(x+3)^2(x-2)^3, x \in[-4,4]$$. If $$M$$ and $$m$$ are the maximum and minimum values of $$f$$, respectively in $$[-4,4]$$, then the value of $$M-m$$ is