A series LCR circuit with $$\mathrm{L}=\frac{100}{\pi} \mathrm{mH}, \mathrm{C}=\frac{10^{-3}}{\pi} \mathrm{F}$$ and $$\mathrm{R}=10 \Omega$$, is connected across an ac source of $$220 \mathrm{~V}, 50 \mathrm{~Hz}$$ supply. The power factor of the circuit would be ________.
Two charges of $$-4 \mu \mathrm{C}$$ and $$+4 \mu \mathrm{C}$$ are placed at the points $$\mathrm{A}(1,0,4) \mathrm{m}$$ and $$\mathrm{B}(2,-1,5) \mathrm{m}$$ located in an electric field $$\overrightarrow{\mathrm{E}}=0.20 \hat{i} \mathrm{~V} / \mathrm{cm}$$. The magnitude of the torque acting on the dipole is $$8 \sqrt{\alpha} \times 10^{-5} \mathrm{Nm}$$, where $$\alpha=$$ _________.
A ring and a solid sphere roll down the same inclined plane without slipping. They start from rest. The radii of both bodies are identical and the ratio of their kinetic energies is $$\frac{7}{x}$$, where $$x$$ is _________.
A body falling under gravity covers two points $$A$$ and $$B$$ separated by $$80 \mathrm{~m}$$ in $$2 \mathrm{~s}$$. The distance of upper point A from the starting point is _________ $$\mathrm{m}$$ (use $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$).