1
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$e_1$$ be the eccentricity of the hyperbola $$\frac{x^2}{16}-\frac{y^2}{9}=1$$ and $$e_2$$ be the eccentricity of the ellipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \mathrm{a} > \mathrm{b}$$, which passes through the foci of the hyperbola. If $$\mathrm{e}_1 \mathrm{e}_2=1$$, then the length of the chord of the ellipse parallel to the $$x$$-axis and passing through $$(0,2)$$ is :

A
$$\frac{8 \sqrt{5}}{3}$$
B
$$3 \sqrt{5}$$
C
$$4 \sqrt{5}$$
D
$$\frac{10 \sqrt{5}}{3}$$
2
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\text { The } 20^{\text {th }} \text { term from the end of the progression } 20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4} \text { is : }$$

A
$$-115$$
B
$$-100$$
C
$$-110$$
D
$$-118$$
3
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}$$ and $$g: \mathbf{R}-\left\{\frac{-5}{2}\right\} \rightarrow \mathbf{R}$$ be defined as $$f(x)=\frac{2 x+3}{2 x+1}$$ and $$g(x)=\frac{|x|+1}{2 x+5}$$. Then, the domain of the function fog is :

A
$$\mathbf{R}-\left\{-\frac{7}{4}\right\}$$
B
$$\mathbf{R}$$
C
$$\mathbf{R}-\left\{-\frac{5}{2},-\frac{7}{4}\right\}$$
D
$$\mathbf{R}-\left\{-\frac{5}{2}\right\}$$
4
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\text { If } \lim _\limits{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _e(1-x)}{3 \tan ^2 x}=\frac{1}{3} \text {, then } 2 \alpha-\beta \text { is equal to : }$$

A
2
B
1
C
5
D
7
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12