The mean and standard deviation of 15 observations were found to be 12 and 3 respectively. On rechecking it was found that an observation was read as 10 in place of 12 . If $$\mu$$ and $$\sigma^2$$ denote the mean and variance of the correct observations respectively, then $$15\left(\mu+\mu^2+\sigma^2\right)$$ is equal to __________.
The coefficient of $$x^{2012}$$ in the expansion of $$(1-x)^{2008}\left(1+x+x^2\right)^{2007}$$ is equal to _________.
The lines $$\frac{x-2}{2}=\frac{y}{-2}=\frac{z-7}{16}$$ and $$\frac{x+3}{4}=\frac{y+2}{3}=\frac{z+2}{1}$$ intersect at the point $$P$$. If the distance of $$\mathrm{P}$$ from the line $$\frac{x+1}{2}=\frac{y-1}{3}=\frac{z-1}{1}$$ is $$l$$, then $$14 l^2$$ is equal to __________.
Let $$f(x)=\int_\limits0^x g(t) \log _{\mathrm{e}}\left(\frac{1-\mathrm{t}}{1+\mathrm{t}}\right) \mathrm{dt}$$, where $$g$$ is a continuous odd function. If $$\int_{-\pi / 2}^{\pi / 2}\left(f(x)+\frac{x^2 \cos x}{1+\mathrm{e}^x}\right) \mathrm{d} x=\left(\frac{\pi}{\alpha}\right)^2-\alpha$$, then $$\alpha$$ is equal to _________.