Let the image of the point $$(1,0,7)$$ in the line $$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$$ be the point $$(\alpha, \beta, \gamma)$$. Then which one of the following points lies on the line passing through $$(\alpha, \beta, \gamma)$$ and making angles $$\frac{2 \pi}{3}$$ and $$\frac{3 \pi}{4}$$ with $$y$$-axis and $$z$$-axis respectively and an acute angle with $$x$$-axis ?
Let $$A$$ and $$B$$ be two finite sets with $$m$$ and $$n$$ elements respectively. The total number of subsets of the set $$A$$ is 56 more than the total number of subsets of $$B$$. Then the distance of the point $$P(m, n)$$ from the point $$Q(-2,-3)$$ is :
If $$\alpha, \beta$$ are the roots of the equation, $$x^2-x-1=0$$ and $$S_n=2023 \alpha^n+2024 \beta^n$$, then :
Let $$e_1$$ be the eccentricity of the hyperbola $$\frac{x^2}{16}-\frac{y^2}{9}=1$$ and $$e_2$$ be the eccentricity of the ellipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \mathrm{a} > \mathrm{b}$$, which passes through the foci of the hyperbola. If $$\mathrm{e}_1 \mathrm{e}_2=1$$, then the length of the chord of the ellipse parallel to the $$x$$-axis and passing through $$(0,2)$$ is :