1
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y=y(x)$$ is the solution curve of the differential equation $$\left(x^2-4\right) \mathrm{d} y-\left(y^2-3 y\right) \mathrm{d} x=0, x>2, y(4)=\frac{3}{2}$$ and the slope of the curve is never zero, then the value of $$y(10)$$ equals :

A
$$\frac{3}{1+(8)^{1 / 4}}$$
B
$$\frac{3}{1-(8)^{1 / 4}}$$
C
$$\frac{3}{1-2 \sqrt{2}}$$
D
$$\frac{3}{1+2 \sqrt{2}}$$
2
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$2 \tan ^2 \theta-5 \sec \theta=1$$ has exactly 7 solutions in the interval $$\left[0, \frac{n \pi}{2}\right]$$, for the least value of $$n \in \mathbf{N}$$, then $$\sum_\limits{k=1}^n \frac{k}{2^k}$$ is equal to:

A
$$\frac{1}{2^{14}}\left(2^{15}-15\right)$$
B
$$1-\frac{15}{2^{13}}$$
C
$$\frac{1}{2^{15}}\left(2^{14}-14\right)$$
D
$$\frac{1}{2^{13}}\left(2^{14}-15\right)$$
3
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$g(x)=3 f\left(\frac{x}{3}\right)+f(3-x)$$ and $$f^{\prime \prime}(x)>0$$ for all $$x \in(0,3)$$. If $$g$$ is decreasing in $$(0, \alpha)$$ and increasing in $$(\alpha, 3)$$, then $$8 \alpha$$ is :

A
0
B
24
C
18
D
20
4
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{R}$$ be the interior region between the lines $$3 x-y+1=0$$ and $$x+2 y-5=0$$ containing the origin. The set of all values of $$a$$, for which the points $$\left(a^2, a+1\right)$$ lie in $$R$$, is :

A
 $$(-3,0) \cup\left(\frac{2}{3}, 1\right)$$
B
$$(-3,0) \cup\left(\frac{1}{3}, 1\right)$$
C
$$(-3,-1) \cup\left(\frac{1}{3}, 1\right)$$
D
$$(-3,-1) \cup\left(-\frac{1}{3}, 1\right)$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12