Let $$A$$ and $$B$$ be two finite sets with $$m$$ and $$n$$ elements respectively. The total number of subsets of the set $$A$$ is 56 more than the total number of subsets of $$B$$. Then the distance of the point $$P(m, n)$$ from the point $$Q(-2,-3)$$ is :
If $$\alpha, \beta$$ are the roots of the equation, $$x^2-x-1=0$$ and $$S_n=2023 \alpha^n+2024 \beta^n$$, then :
Let $$e_1$$ be the eccentricity of the hyperbola $$\frac{x^2}{16}-\frac{y^2}{9}=1$$ and $$e_2$$ be the eccentricity of the ellipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, \mathrm{a} > \mathrm{b}$$, which passes through the foci of the hyperbola. If $$\mathrm{e}_1 \mathrm{e}_2=1$$, then the length of the chord of the ellipse parallel to the $$x$$-axis and passing through $$(0,2)$$ is :
$$\text { The } 20^{\text {th }} \text { term from the end of the progression } 20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4} \text { is : }$$