1
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$f: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}$$ and $$g: \mathbf{R}-\left\{\frac{-5}{2}\right\} \rightarrow \mathbf{R}$$ be defined as $$f(x)=\frac{2 x+3}{2 x+1}$$ and $$g(x)=\frac{|x|+1}{2 x+5}$$. Then, the domain of the function fog is :

A
$$\mathbf{R}-\left\{-\frac{7}{4}\right\}$$
B
$$\mathbf{R}$$
C
$$\mathbf{R}-\left\{-\frac{5}{2},-\frac{7}{4}\right\}$$
D
$$\mathbf{R}-\left\{-\frac{5}{2}\right\}$$
2
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\text { If } \lim _\limits{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\log _e(1-x)}{3 \tan ^2 x}=\frac{1}{3} \text {, then } 2 \alpha-\beta \text { is equal to : }$$

A
2
B
1
C
5
D
7
3
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$y=y(x)$$ is the solution curve of the differential equation $$\left(x^2-4\right) \mathrm{d} y-\left(y^2-3 y\right) \mathrm{d} x=0, x>2, y(4)=\frac{3}{2}$$ and the slope of the curve is never zero, then the value of $$y(10)$$ equals :

A
$$\frac{3}{1+(8)^{1 / 4}}$$
B
$$\frac{3}{1-(8)^{1 / 4}}$$
C
$$\frac{3}{1-2 \sqrt{2}}$$
D
$$\frac{3}{1+2 \sqrt{2}}$$
4
JEE Main 2024 (Online) 27th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$2 \tan ^2 \theta-5 \sec \theta=1$$ has exactly 7 solutions in the interval $$\left[0, \frac{n \pi}{2}\right]$$, for the least value of $$n \in \mathbf{N}$$, then $$\sum_\limits{k=1}^n \frac{k}{2^k}$$ is equal to:

A
$$\frac{1}{2^{14}}\left(2^{15}-15\right)$$
B
$$1-\frac{15}{2^{13}}$$
C
$$\frac{1}{2^{15}}\left(2^{14}-14\right)$$
D
$$\frac{1}{2^{13}}\left(2^{14}-15\right)$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12