The frequencies at which the current amplitude in an LCR series circuit becomes $$\frac{1}{\sqrt{2}}$$ times its maximum value, are $$212\,\mathrm{rad} \,\mathrm{s}^{-1}$$ and $$232 \,\mathrm{rad} \,\mathrm{s}^{-1}$$. The value of resistance in the circuit is $$R=5 \,\Omega$$. The self inductance in the circuit is __________ $$\mathrm{mH}$$.
Two electric dipoles of dipole moments $$1.2 \times 10^{-30} \,\mathrm{Cm}$$ and $$2.4 \times 10^{-30} \,\mathrm{Cm}$$ are placed in two different uniform electric fields of strengths $$5 \times 10^{4} \,\mathrm{NC}^{-1}$$ and $$15 \times 10^{4} \,\mathrm{NC}^{-1}$$ respectively. The ratio of maximum torque experienced by the electric dipoles will be $$\frac{1}{x}$$. The value of $$x$$ is __________.
The diameter of an air bubble which was initially $$2 \mathrm{~mm}$$, rises steadily through a solution of density $$1750 \mathrm{~kg} \mathrm{~m}^{-3}$$ at the rate of $$0.35 \,\mathrm{cms}^{-1}$$. The coefficient of viscosity of the solution is _________ poise (in nearest integer). (the density of air is negligible).
A block of mass '$$\mathrm{m}$$' (as shown in figure) moving with kinetic energy E compresses a spring through a distance $$25 \mathrm{~cm}$$ when, its speed is halved. The value of spring constant of used spring will be $$\mathrm{nE} \,\,\mathrm{Nm}^{-1}$$ for $$\mathrm{n}=$$ _________.