As shown in the figure, after passing through the medium 1 . The speed of light $$v_{2}$$ in medium 2 will be :
$$\left(\right.$$ Given $$\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$$ )
In normal adujstment, for a refracting telescope, the distance between objective and eye piece is $$30 \mathrm{~cm}$$. The focal length of the objective, when the angular magnification of the telescope is 2 , will be :
The equation $$\lambda=\frac{1.227}{x} \mathrm{~nm}$$ can be used to find the de-Brogli wavelength of an electron. In this equation $$x$$ stands for :
Where
$$\mathrm{m}=$$ mass of electron
$$\mathrm{P}=$$ momentum of electron
$$\mathrm{K}=$$ Kinetic energy of electron
$$\mathrm{V}=$$ Accelerating potential in volts for electron
Identify the solar cell characteristics from the following options :