The remainder when $$7^{2022}+3^{2022}$$ is divided by 5 is :
Let $$S_{1}=\left\{z_{1} \in \mathbf{C}:\left|z_{1}-3\right|=\frac{1}{2}\right\}$$ and $$S_{2}=\left\{z_{2} \in \mathbf{C}:\left|z_{2}-\right| z_{2}+1||=\left|z_{2}+\right| z_{2}-1||\right\}$$. Then, for $$z_{1} \in S_{1}$$ and $$z_{2} \in S_{2}$$, the least value of $$\left|z_{2}-z_{1}\right|$$ is :
If the minimum value of $$f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0$$, is 14 , then the value of $$\alpha$$ is equal to :
Let $$\alpha, \beta$$ and $$\gamma$$ be three positive real numbers. Let $$f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in \mathbf{R}$$ and $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. If $$\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}}$$ be in arithmetic progression with mean zero, then the value of $$f\left(g\left(\frac{1}{\mathrm{n}} \sum\limits_{i=1}^{\mathrm{n}} f\left(\mathrm{a}_{i}\right)\right)\right)$$ is equal to :