Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $$\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$$ is equal to :
Let a vector $$\vec{a}$$ has magnitude 9. Let a vector $$\vec{b}$$ be such that for every $$(x, y) \in \mathbf{R} \times \mathbf{R}-\{(0,0)\}$$, the vector $$(x \vec{a}+y \vec{b})$$ is perpendicular to the vector $$(6 y \vec{a}-18 x \vec{b})$$. Then the value of $$|\vec{a} \times \vec{b}|$$ is equal to :
For $$\mathrm{t} \in(0,2 \pi)$$, if $$\mathrm{ABC}$$ is an equilateral triangle with vertices $$\mathrm{A}(\sin t,-\cos \mathrm{t}), \mathrm{B}(\operatorname{cost}, \sin t)$$ and $$C(a, b)$$ such that its orthocentre lies on a circle with centre $$\left(1, \frac{1}{3}\right)$$, then $$\left(a^{2}-b^{2}\right)$$ is equal to :
For $$\alpha \in \mathbf{N}$$, consider a relation $$\mathrm{R}$$ on $$\mathbf{N}$$ given by $$\mathrm{R}=\{(x, y): 3 x+\alpha y$$ is a multiple of 7$$\}$$. The relation $$R$$ is an equivalence relation if and only if :