If $$\int\limits_{0}^{\sqrt{3}} \frac{15 x^{3}}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} \mathrm{~d} x=\alpha \sqrt{2}+\beta \sqrt{3}$$, where $$\alpha, \beta$$ are integers, then $$\alpha+\beta$$ is equal to __________.
Let $$A=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]$$ and $$B=\left[\begin{array}{cc}\beta & 1 \\ 1 & 0\end{array}\right], \alpha, \beta \in \mathbf{R}$$. Let $$\alpha_{1}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$$ and $$\alpha_{2}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{B}^{2}$$. Then $$\left|\alpha_{1}-\alpha_{2}\right|$$ is equal to ___________.
For $$\mathrm{p}, \mathrm{q} \in \mathbf{R}$$, consider the real valued function $$f(x)=(x-\mathrm{p})^{2}-\mathrm{q}, x \in \mathbf{R}$$ and $$\mathrm{q}>0$$. Let $$\mathrm{a}_{1}$$, $$\mathrm{a}_{2^{\prime}}$$ $$\mathrm{a}_{3}$$ and $$\mathrm{a}_{4}$$ be in an arithmetic progression with mean $$\mathrm{p}$$ and positive common difference. If $$\left|f\left(\mathrm{a}_{i}\right)\right|=500$$ for all $$i=1,2,3,4$$, then the absolute difference between the roots of $$f(x)=0$$ is ___________.
Let $$x_{1}, x_{2}, x_{3}, \ldots, x_{20}$$ be in geometric progression with $$x_{1}=3$$ and the common ratio $$\frac{1}{2}$$. A new data is constructed replacing each $$x_{i}$$ by $$\left(x_{i}-i\right)^{2}$$. If $$\bar{x}$$ is the mean of new data, then the greatest integer less than or equal to $$\bar{x}$$ is ____________.