Let $$\alpha, \beta$$ and $$\gamma$$ be three positive real numbers. Let $$f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in \mathbf{R}$$ and $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. If $$\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}}$$ be in arithmetic progression with mean zero, then the value of $$f\left(g\left(\frac{1}{\mathrm{n}} \sum\limits_{i=1}^{\mathrm{n}} f\left(\mathrm{a}_{i}\right)\right)\right)$$ is equal to :
The minimum value of the twice differentiable function $$f(x)=\int\limits_{0}^{x} \mathrm{e}^{x-\mathrm{t}} f^{\prime}(\mathrm{t}) \mathrm{dt}-\left(x^{2}-x+1\right) \mathrm{e}^{x}$$, $$x \in \mathbf{R}$$, is :
Let $$S$$ be the set of all passwords which are six to eight characters long, where each character is either an alphabet from $$\{A, B, C, D, E\}$$ or a number from $$\{1,2,3,4,5\}$$ with the repetition of characters allowed. If the number of passwords in $$S$$ whose at least one character is a number from $$\{1,2,3,4,5\}$$ is $$\alpha \times 5^{6}$$, then $$\alpha$$ is equal to ___________.
Let $$\mathrm{P}(-2,-1,1)$$ and $$\mathrm{Q}\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$$ be the vertices of the rhombus PRQS. If the direction ratios of the diagonal RS are $$\alpha,-1, \beta$$, where both $$\alpha$$ and $$\beta$$ are integers of minimum absolute values, then $$\alpha^{2}+\beta^{2}$$ is equal to ____________.