If $$y=y(x), x \in(0, \pi / 2)$$ be the solution curve of the differential equation
$$\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 \mathrm{e}^{-4 x}(2 \sin 2 x+\cos 2 x)$$,
with $$y(\pi / 4)=\mathrm{e}^{-\pi}$$, then $$y(\pi / 6)$$ is equal to :
Let $$C$$ be the centre of the circle $$x^{2}+y^{2}-x+2 y=\frac{11}{4}$$ and $$P$$ be a point on the circle. A line passes through the point $$\mathrm{C}$$, makes an angle of $$\frac{\pi}{4}$$ with the line $$\mathrm{CP}$$ and intersects the circle at the points $$Q$$ and $$R$$. Then the area of the triangle $$P Q R$$ (in unit $$^{2}$$ ) is :
The remainder when $$7^{2022}+3^{2022}$$ is divided by 5 is :
Let $$S_{1}=\left\{z_{1} \in \mathbf{C}:\left|z_{1}-3\right|=\frac{1}{2}\right\}$$ and $$S_{2}=\left\{z_{2} \in \mathbf{C}:\left|z_{2}-\right| z_{2}+1||=\left|z_{2}+\right| z_{2}-1||\right\}$$. Then, for $$z_{1} \in S_{1}$$ and $$z_{2} \in S_{2}$$, the least value of $$\left|z_{2}-z_{1}\right|$$ is :