Sun light falls normally on a surface of area $$36 \mathrm{~cm}^{2}$$ and exerts an average force of $$7.2 \times 10^{-9} \mathrm{~N}$$ within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is
The power of a lens (biconvex) is $$1.25 \mathrm{~m}^{-1}$$ in particular medium. Refractive index of the lens is 1.5 and radii of curvature are $$20 \mathrm{~cm}$$ and $$40 \mathrm{~cm}$$ respectively. The refractive index of surrounding medium:
Two streams of photons, possessing energies equal to five and ten times the work function of metal are incident on the metal surface successively. The ratio of maximum velocities of the photoelectron emitted, in the two cases respectively, will be
A ball is thrown vertically upwards with a velocity of $$19.6 \mathrm{~ms}^{-1}$$ from the top of a tower. The ball strikes the ground after $$6 \mathrm{~s}$$. The height from the ground up to which the ball can rise will be $$\left(\frac{k}{5}\right) \mathrm{m}$$. The value of $$\mathrm{k}$$ is __________. (use $$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$$)