Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and
$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$.
Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :
Let $$I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots .$$ Then :
The area enclosed by the curves $$y=\log _{e}\left(x+\mathrm{e}^{2}\right), x=\log _{e}\left(\frac{2}{y}\right)$$ and $$x=\log _{\mathrm{e}} 2$$, above the line $$y=1$$ is:
Let $$y=y(x)$$ be the solution curve of the differential equation $$ \frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{1 / 2}$$, $$x >1$$ passing through the point $$\left(2, \sqrt{\frac{1}{3}}\right)$$. Then $$\sqrt{7}\, y(8)$$ is equal to :