A pressure-pump has a horizontal tube of cross sectional area $$10 \mathrm{~cm}^{2}$$ for the outflow of water at a speed of $$20 \mathrm{~m} / \mathrm{s}$$. The force exerted on the vertical wall just in front of the tube which stops water horizontally flowing out of the tube, is :
[given: density of water $$=1000 \mathrm{~kg} / \mathrm{m}^{3}$$]
A uniform metal chain of mass m and length 'L' passes over a massless and frictionless pulley. It is released from rest with a part of its length 'l' is hanging on one side and rest of its length '$$\mathrm{L}-l$$' is hanging on the other side of the pully. At a certain point of time, when $$l=\frac{L}{x}$$, the acceleration of the chain is $$\frac{g}{2}$$. The value of x is __________.
A bullet of mass $$200 \mathrm{~g}$$ having initial kinetic energy $$90 \mathrm{~J}$$ is shot inside a long swimming pool as shown in the figure. If it's kinetic energy reduces to $$40 \mathrm{~J}$$ within $$1 \mathrm{~s}$$, the minimum length of the pool, the bullet has to travel so that it completely comes to rest is
Assume there are two identical simple pendulum clocks. Clock - 1 is placed on the earth and Clock - 2 is placed on a space station located at a height h above the earth surface. Clock - 1 and Clock - 2 operate at time periods 4 s and 6 s respectively. Then the value of h is -
(consider radius of earth $$R_{E}=6400 \mathrm{~km}$$ and $$\mathrm{g}$$ on earth $$10 \mathrm{~m} / \mathrm{s}^{2}$$ )