Let $$\mathrm{z}=a+i b, b \neq 0$$ be complex numbers satisfying $$z^{2}=\bar{z} \cdot 2^{1-z}$$. Then the least value of $$n \in N$$, such that $$z^{n}=(z+1)^{n}$$, is equal to __________.
A bag contains 4 white and 6 black balls. Three balls are drawn at random from the bag. Let $$\mathrm{X}$$ be the number of white balls, among the drawn balls. If $$\sigma^{2}$$ is the variance of $$\mathrm{X}$$, then $$100 \sigma^{2}$$ is equal to ________.
The value of the integral $$\int\limits_{0}^{\frac{\pi}{2}} 60 \frac{\sin (6 x)}{\sin x} d x$$ is equal to _________.
Consider the efficiency of carnot's engine is given by $$\eta=\frac{\alpha \beta}{\sin \theta} \log_e \frac{\beta x}{k T}$$, where $$\alpha$$ and $$\beta$$ are constants. If T is temperature, k is Boltzmann constant, $$\theta$$ is angular displacement and x has the dimensions of length. Then, choose the incorrect option :