A uniform electric field $$\mathrm{E}=(8 \mathrm{~m} / \mathrm{e}) \,\mathrm{V} / \mathrm{m}$$ is created between two parallel plates of length $$1 \mathrm{~m}$$ as shown in figure, (where $$\mathrm{m}=$$ mass of electron and e = charge of electron). An electron enters the field symmetrically between the plates with a speed of $$2 \mathrm{~m} / \mathrm{s}$$. The angle of the deviation $$(\theta)$$ of the path of the electron as it comes out of the field will be _________.
Given below are two statements :
Statement I : A uniform wire of resistance $$80 \,\Omega$$ is cut into four equal parts. These parts are now connected in parallel. The equivalent resistance of the combination will be $$5 \,\Omega$$.
Statement II: Two resistances 2R and 3R are connected in parallel in a electric circuit. The value of thermal energy developed in 3R and 2R will be in the ratio $$3: 2$$.
In the light of the above statements, choose the most appropriate answer from the option given below
A triangular shaped wire carrying $$10 \mathrm{~A}$$ current is placed in a uniform magnetic field of $$0.5 \mathrm{~T}$$, as shown in figure. The magnetic force on segment $$\mathrm{CD}$$ is
(Given $$\mathrm{BC}=\mathrm{CD}=\mathrm{BD}=5 \mathrm{~cm}$$.)
The magnetic field at the center of current carrying circular loop is $$B_{1}$$. The magnetic field at a distance of $$\sqrt{3}$$ times radius of the given circular loop from the center on its axis is $$B_{2}$$. The value of $$B_{1} / B_{2}$$ will be