1
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the absolute maximum and absolute minimum values of the function $$f(x)=\tan ^{-1}(\sin x-\cos x)$$ in the interval $$[0, \pi]$$ is :

A
0
B
$$\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\frac{\pi}{4}$$
C
$$\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\frac{\pi}{4}$$
D
$$\frac{-\pi}{12}$$
2
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and

$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$.

Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :

A
$$\frac{-2 \sqrt{2}}{3}$$
B
$$\frac{2}{3}$$
C
$$\frac{1}{3}$$
D
$$ \frac{-2}{3}$$
3
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots .$$ Then :

A
$$50 I_{6}-9 I_{5}=x I_{5}^{\prime}$$
B
$$50 I_{6}-11 I_{5}=x I_{5}^{\prime}$$
C
$$50 I_{6}-9 I_{5}=I_{5}^{\prime}$$
D
$$50 I_{6}-11 I_{5}=I_{5}^{\prime}$$
4
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The area enclosed by the curves $$y=\log _{e}\left(x+\mathrm{e}^{2}\right), x=\log _{e}\left(\frac{2}{y}\right)$$ and $$x=\log _{\mathrm{e}} 2$$, above the line $$y=1$$ is:

A
$$2+\mathrm{e}-\log _{\mathrm{e}} 2$$
B
$$1+e-\log _{e} 2$$
C
$$e-\log _{e} 2$$
D
$$1+\log _{e} 2$$
JEE Main Papers
2023
2021
EXAM MAP