$$
\text { Let } S=\left\{x \in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2} \geq 0\right\} \text { and } $$
$$T=\left\{x \in \mathbb{Z}: x^{2}-7|x|+9 \leq 0\right\} \text {. }
$$
Then the number of elements in $$\mathrm{S} \cap \mathrm{T}$$ is :
Let $$\alpha$$, $$\beta$$ be the roots of the equation $$x^{2}-\sqrt{2} x+\sqrt{6}=0$$ and $$\frac{1}{\alpha^{2}}+1, \frac{1}{\beta^{2}}+1$$ be the roots of the equation $$x^{2}+a x+b=0$$. Then the roots of the equation $$x^{2}-(a+b-2) x+(a+b+2)=0$$ are :
Let $$\mathrm{A}$$ and $$\mathrm{B}$$ be any two $$3 \times 3$$ symmetric and skew symmetric matrices respectively. Then which of the following is NOT true?
$$ \text { Let } f(x)=a x^{2}+b x+c \text { be such that } f(1)=3, f(-2)=\lambda \text { and } $$ $$f(3)=4$$. If $$f(0)+f(1)+f(-2)+f(3)=14$$, then $$\lambda$$ is equal to :