1
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$ \text { Let } f(x)=a x^{2}+b x+c \text { be such that } f(1)=3, f(-2)=\lambda \text { and } $$ $$f(3)=4$$. If $$f(0)+f(1)+f(-2)+f(3)=14$$, then $$\lambda$$ is equal to :

A
$$-$$4
B
$$\frac{13}{2}$$
C
$$\frac{23}{2}$$
D
4
2
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ defined by

$$f(x)=\lim\limits_{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}$$ is continuous for all x in :

A
$$R-\{-1\}$$
B
$$ \mathbb{R}-\{-1,1\}$$
C
$$R-\{1\}$$
D
$$R-\{0\}$$
3
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The function $$f(x)=x \mathrm{e}^{x(1-x)}, x \in \mathbb{R}$$, is :

A
increasing in $$\left(-\frac{1}{2}, 1\right)$$
B
decreasing in $$\left(\frac{1}{2}, 2\right)$$
C
increasing in $$\left(-1,-\frac{1}{2}\right)$$
D
decreasing in $$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
4
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The sum of the absolute maximum and absolute minimum values of the function $$f(x)=\tan ^{-1}(\sin x-\cos x)$$ in the interval $$[0, \pi]$$ is :

A
0
B
$$\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\frac{\pi}{4}$$
C
$$\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\frac{\pi}{4}$$
D
$$\frac{-\pi}{12}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12