1
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Four numbers are chosen at random (without replacement) from the set $$\left\{ {1,2,3,....20} \right\}.$$

Statement - 1: The probability that the chosen numbers when arranged in some order will form an AP is $${1 \over {85}}.$$

Statement - 2: If the four chosen numbers form an AP, then the set of all possible values of common difference is $$\left( { \pm 1, \pm 2, \pm 3, \pm 4, \pm 5} \right).$$

A
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false, Statement -2 is true.
D
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
2
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Solution of the differential equation

$$\cos x\,dy = y\left( {\sin x - y} \right)dx,\,\,0 < x <{\pi \over 2}$$ is :
A
$$y\sec x = \tan x + c$$
B
$$y\tan x = \sec x + c$$
C
$$\tan x = \left( {\sec x + c} \right)y$$
D
$$\sec x = \left( {\tan x + c} \right)y$$
3
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$p(x)$$ be a function defined on $$R$$ such that $$p'(x)=p'(1-x),$$ for all $$x \in \left[ {0,1} \right],p\left( 0 \right) = 1$$ and $$p(1)=41.$$ Then $$\int\limits_0^1 {p\left( x \right)dx} $$ equals :
A
$$21$$
B
$$41$$
C
$$42$$
D
$$\sqrt {41} $$
4
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
The area bounded by the curves $$y = \cos x$$ and $$y = \sin x$$ between the ordinates $$x=0$$ and $$x = {{3\pi } \over 2}$$ is
A
$$4\sqrt 2 + 2$$
B
$$4\sqrt 2 - 1$$
C
$$4\sqrt 2 + 1$$
D
$$4\sqrt 2 - 2$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12