1
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
An urn contains nine balls of which three are red, four are blue and two are green. Three balls are drawn at random without replacement from the urn. The probability that the three balls have different colours is :
A
$${2 \over 7}$$
B
$${1 \over 21}$$
C
$${1 \over 23}$$
D
$${1 \over 3}$$
2
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Four numbers are chosen at random (without replacement) from the set $$\left\{ {1,2,3,....20} \right\}.$$

Statement - 1: The probability that the chosen numbers when arranged in some order will form an AP is $${1 \over {85}}.$$

Statement - 2: If the four chosen numbers form an AP, then the set of all possible values of common difference is $$\left( { \pm 1, \pm 2, \pm 3, \pm 4, \pm 5} \right).$$

A
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false, Statement -2 is true.
D
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
3
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Solution of the differential equation

$$\cos x\,dy = y\left( {\sin x - y} \right)dx,\,\,0 < x <{\pi \over 2}$$ is :
A
$$y\sec x = \tan x + c$$
B
$$y\tan x = \sec x + c$$
C
$$\tan x = \left( {\sec x + c} \right)y$$
D
$$\sec x = \left( {\tan x + c} \right)y$$
4
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$p(x)$$ be a function defined on $$R$$ such that $$p'(x)=p'(1-x),$$ for all $$x \in \left[ {0,1} \right],p\left( 0 \right) = 1$$ and $$p(1)=41.$$ Then $$\int\limits_0^1 {p\left( x \right)dx} $$ equals :
A
$$21$$
B
$$41$$
C
$$42$$
D
$$\sqrt {41} $$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12