1
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$A$$ be a $$\,2 \times 2$$ matrix with non-zero entries and let $${A^2} = I,$$
where $$I$$ is $$2 \times 2$$ identity matrix. Define
$$Tr$$$$(A)=$$ sum of diagonal elements of $$A$$ and $$\left| A \right| = $$ determinant of matrix $$A$$.
Statement- 1: $$Tr$$$$(A)=0$$.
Statement- 2: $$\left| A \right| = 1$$ .
A
statement - 1 is true, statement - 2 is true; statement - 2 is not a correct explanation for statement - 1.
B
statement - 1 is true, statement - 2 is false.
C
statement - 1 is false, statement -2 is true
D
statement -1 is true, statement - 2 is true; statement - 2 is a correct explanation for statement - 1.
2
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be a continuous function defined by $$$f\left( x \right) = {1 \over {{e^x} + 2{e^{ - x}}}}$$$

Statement - 1 : $$f\left( c \right) = {1 \over 3},$$ for some $$c \in R$$.

Statement - 2 : $$0 < f\left( x \right) \le {1 \over {2\sqrt 2 }},$$ for all $$x \in R$$

A
Statement - 1 is true, Statement -2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false, Statement - 2 is true.
D
Statement - 1 is true, Statement -2 is true; Statement -2 is a correct explanation for Statement - 1.
3
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:R \to R$$ be defined by $$$f\left( x \right) = \left\{ {\matrix{ {k - 2x,\,\,if} & {x \le - 1} \cr {2x + 3,\,\,if} & {x > - 1} \cr } } \right.$$$

If $$f$$has a local minimum at $$x=-1$$, then a possible value of $$k$$ is

A
$$0$$
B
$$ - {1 \over 2}$$
C
$$-1$$
D
$$1$$
4
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$f:\left( { - 1,1} \right) \to R$$ be a differentiable function with $$f\left( 0 \right) = - 1$$ and $$f'\left( 0 \right) = 1$$. Let $$g\left( x \right) = {\left[ {f\left( {2f\left( x \right) + 2} \right)} \right]^2}$$. Then $$g'\left( 0 \right) = $$
A
$$-4$$
B
$$0$$
C
$$-2$$
D
$$4$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12