1
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
The area of the plane region bounded by the curves $$x + 2{y^2} = 0$$ and $$\,x + 3{y^2} = 1$$ is equal to :
A
$${5 \over 3}$$
B
$${1 \over 3}$$
C
$${2 \over 3}$$
D
$${4 \over 3}$$
2
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
The value of $$\sqrt 2 \int {{{\sin xdx} \over {\sin \left( {x - {\pi \over 4}} \right)}}} $$ is
A
$$\,x + \log \,\left| {\,\cos \left( {x - {\pi \over 4}} \right)\,} \right| + c$$
B
$$\,x - \log \,\left| {\,\sin \left( {x - {\pi \over 4}} \right)\,} \right| + c$$
C
$$\,x + \log \,\left| {\,\sin \left( {x - {\pi \over 4}} \right)\,} \right| + c$$
D
$$\,x - \log \,\left| {\,\cos \left( {x - {\pi \over 4}} \right)\,} \right| + c$$
3
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
Let $$a, b, c$$ be any real numbers. Suppose that there are real numbers $$x, y, z$$ not all zero such that $$x=cy+bz,$$ $$y=az+cx,$$ and $$z=bx+ay.$$ Then $${a^2} + {b^2} + {c^2} + 2abc$$ is equal to :
A
$$2$$
B
$$-1$$
C
$$0$$
D
$$1$$
4
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
Let $$A$$ be $$a\,2 \times 2$$ matrix with real entries. Let $$I$$ be the $$2 \times 2$$ identity matrix. Denote by tr$$(A)$$, the sum of diagonal entries of $$a$$. Assume that $${a^2} = I.$$
Statement-1 : If $$A \ne I$$ and $$A \ne - I$$, then det$$(A)=-1$$
Statement- 2 : If $$A \ne I$$ and $$A \ne - I$$, then tr $$(A)$$ $$ \ne 0$$.
A
statement - 1 is false, statement -2 is true
B
statement -1 is true, statement - 2 is true; statement - 2 is a correct explanation for statement - 1.
C
statement - 1 is true, statement - 2 is true; statement - 2 is not a correct explanation for statement - 1.
D
statement - 1 is true, statement - 2 is false.
JEE Main Papers
2023
2021
EXAM MAP