1
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
Consider a block of conducting material of resistivity $$'\rho '$$ shown in the figure. Current $$'I'$$ enters at $$'A'$$ and leaves from $$'D'$$. We apply superposition principle to find voltage $$'\Delta V'$$ developed between $$'B'$$ and $$'C'$$. The calculation is done in the following steps:
(i) Take current $$'I'$$ entering from $$'A'$$ and assume it to spread over a hemispherical surface in the block.
(ii) Calculate field $$E(r)$$ at distance $$'r'$$ from A by using Ohm's law $$E = \rho j,$$ where $$j$$ is the current per unit area at $$'r'$$.
(iii) From the $$'r'$$ dependence of $$E(r)$$, obtain the potential $$V(r)$$ at $$r$$.
(iv) Repeat (i), (ii) and (iii) for current $$'I'$$ leaving $$'D'$$ and superpose results for $$'A'$$ and $$'D'.$$ AIEEE 2008 Physics - Current Electricity Question 289 English

$$\Delta V$$ measured between $$B$$ and $$C$$ is

A
$${{\rho I} \over {\pi a}} - {{\rho I} \over {\pi \left( {a + b} \right)}}$$
B
$${{\rho I} \over a} - {{\rho I} \over {\left( {a + b} \right)}}$$
C
$${{\rho I} \over {2\pi a}} - {{\rho I} \over {2\pi \left( {a + b} \right)}}$$
D
$${{\rho I} \over {2\pi \left( {a - b} \right)}}$$
2
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
A body is at rest at $$x=0.$$ At $$t=0,$$ it starts moving in the positive $$x$$-direction with a constant acceleration. At the same instant another body passes through $$x=0$$ moving in the positive $$x$$ direction with a constant speed. The position of the first body is given by $${x_1}\left( t \right)$$ after time $$'t';$$ and that of the second body by $${x_2}\left( t \right)$$ after the same time interval. Which of the following graphs correctly describes $$\left( {{x_1} - {x_2}} \right)$$ as a function of time $$'t'$$ ?
A
AIEEE 2008 Physics - Motion in a Straight Line Question 93 English Option 1
B
AIEEE 2008 Physics - Motion in a Straight Line Question 93 English Option 2
C
AIEEE 2008 Physics - Motion in a Straight Line Question 93 English Option 3
D
AIEEE 2008 Physics - Motion in a Straight Line Question 93 English Option 4
3
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
Consider a block of conducting material of resistivity $$'\rho '$$ shown in the figure. Current $$'I'$$ enters at $$'A'$$ and leaves from $$'D'$$. We apply superposition principle to find voltage $$'\Delta V'$$ developed between $$'B'$$ and $$'C'$$. The calculation is done in the following steps:
(i) Take current $$'I'$$ entering from $$'A'$$ and assume it to spread over a hemispherical surface in the block.
(ii) Calculate field $$E(r)$$ at distance $$'r'$$ from A by using Ohm's law $$E = \rho j,$$ where $$j$$ is the current per unit area at $$'r'$$.
(iii) From the $$'r'$$ dependence of $$E(r)$$, obtain the potential $$V(r)$$ at $$r$$.
(iv) Repeat (i), (ii) and (iii) for current $$'I'$$ leaving $$'D'$$ and superpose results for $$'A'$$ and $$'D'.$$ AIEEE 2008 Physics - Current Electricity Question 288 English

For current entering at $$A,$$ the electric field at a distance $$'r'$$ from $$A$$ is

A
$${{\rho I} \over {8\pi {r^2}}}$$
B
$${{\rho I} \over {{r^2}}}$$
C
$${{\rho I} \over {2\pi {r^2}}}$$
D
$${{\rho I} \over {4\pi {r^2}}}$$
4
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
A planet in a distant solar system is $$10$$ times more massive than the earth and its radius is $$10$$ times smaller. Given that the escape velocity from the earth is $$11\,\,km\,{s^{ - 1}},$$ the escape velocity from the surface of the planet would be
A
$$1.1\,\,km\,{s^{ - 1}}$$
B
$$100\,\,km\,{s^{ - 1}}$$
C
$$110\,\,km\,{s^{ - 1}}$$
D
$$0.11\,\,km\,{s^{ - 1}}$$
JEE Main Papers
2023
2021
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12