1
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
STATEMENT - 1 : For every natural number $$n \ge 2,$$ $$${1 \over {\sqrt 1 }} + {1 \over {\sqrt 2 }} + ........ + {1 \over {\sqrt n }} > \sqrt n .$$$

STATEMENT - 2 : For every natural number $$n \ge 2,$$, $$$\sqrt {n\left( {n + 1} \right)} < n + 1.$$$

A
Statement - 1 is false, Statement - 2 is true
B
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for statement - 1
C
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1
D
Statement - 1 is true, Statement - 2 is false
2
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
Let R be the real line. Consider the following subsets of the plane $$R \times R$$ :
$$S = \left\{ {(x,y):y = x + 1\,\,and\,\,0 < x < 2} \right\}$$
$$T = \left\{ {(x,y): x - y\,\,\,is\,\,an\,\,{\mathop{\rm int}} eger\,} \right\}$$,

Which one of the following is true ?

A
Neither S nor T is an equivalence relation on R
B
Both S and T are equivalence relation on R
C
S is an equivalence relation on R but T is not
D
T is an equivalence relation on R but S is not
3
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
The conjugate of a complex number is $${1 \over {i - 1}}$$ then that complex number is :
A
$${{ - 1} \over {i - 1}}$$
B
$${1 \over {i + 1}}\,$$
C
$${{ - 1} \over {i + 1}}$$
D
$${1 \over {i - 1}}$$
4
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
If the straight lines $$\,\,\,\,\,$$ $$\,\,\,\,\,$$ $${{x - 1} \over k} = {{y - 2} \over 2} = {{z - 3} \over 3}$$ $$\,\,\,\,\,$$ and$$\,\,\,\,\,$$ $${{x - 2} \over 3} = {{y - 3} \over k} = {{z - 1} \over 2}$$ intersects at a point, then the integer $$k$$ is equal to
A
$$-5$$
B
$$5$$
C
$$2$$
D
$$-2$$
JEE Main Papers
2023
2021
EXAM MAP