1
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
The solution for $$x$$ of the equation $$\int\limits_{\sqrt 2 }^x {{{dt} \over {t\sqrt {{t^2} - 1} }} = {\pi \over 2}} $$ is
A
$${{\sqrt 3 } \over 2}$$
B
$$2\sqrt 2 $$
C
$$2$$
D
None
2
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
Let $$F\left( x \right) = f\left( x \right) + f\left( {{1 \over x}} \right),$$ where $$f\left( x \right) = \int\limits_l^x {{{\log t} \over {1 + t}}dt,} $$ Then $$F(e)$$ equals
A
$$1$$
B
$$2$$
C
$$1/2$$
D
$$0$$
3
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
$$\int {{{dx} \over {\cos x + \sqrt 3 \sin x}}} $$ equals
A
$$\log \,\tan \,\left( {{x \over 2} + {\pi \over {12}}} \right) + C$$
B
$$\log \,\tan \,\left( {{x \over 2} - {\pi \over {12}}} \right) + C$$
C
$$\,{1 \over 2}\,\log \,\tan \,\left( {{x \over 2} + {\pi \over {12}}} \right) + C$$
D
$$\,{1 \over 2}\,\log \,\tan \,\left( {{x \over 2} - {\pi \over {12}}} \right) + C$$
4
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
If $$D = \left| {\matrix{ 1 & 1 & 1 \cr 1 & {1 + x} & 1 \cr 1 & 1 & {1 + y} \cr } } \right|$$ for $$x \ne 0,y \ne 0,$$ then $$D$$ is :
A
divisible by $$x$$ but not $$y$$
B
divisible by $$y$$ but not $$x$$
C
divisible by neither $$x$$ nor $$y$$
D
divisible by both $$x$$ and $$y$$
JEE Main Papers
2023
2021
EXAM MAP