1
JEE Main 2020 (Online) 8th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Three charged particle A, B and C with charges –4q, 2q and –2q are present on the circumference of a circle of radius d. the charged particles A, C and centre O of the circle formed an equilateral triangle as shown in figure. Electric field at O along x-direction is : JEE Main 2020 (Online) 8th January Morning Slot Physics - Electrostatics Question 181 English
A
$${3{\sqrt 3 q} \over 4{\pi {\varepsilon _0}{d^2}}}$$
B
$${{\sqrt 3 q} \over 4{\pi {\varepsilon _0}{d^2}}}$$
C
$${{\sqrt 3 q} \over {\pi {\varepsilon _0}{d^2}}}$$
D
$${{2\sqrt 3 q} \over {\pi {\varepsilon _0}{d^2}}}$$
2
JEE Main 2020 (Online) 7th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Two infinite planes each with uniform surface charge density to are kept in such a way that the angle between them is 30o. The electric field in the region shown between them is given by : JEE Main 2020 (Online) 7th January Morning Slot Physics - Electrostatics Question 183 English
A
$${\sigma \over {{ \in _0}}}\left[ {\left( {1 + {{\sqrt 3 } \over 2}} \right)\widehat y + {{\widehat x} \over 2}} \right]$$
B
$${\sigma \over {2{ \in _0}}}\left[ {\left( {1 + \sqrt 3 } \right)\widehat y + {{\widehat x} \over 2}} \right]$$
C
$${\sigma \over {2{ \in _0}}}\left[ {\left( {1 + \sqrt 3 } \right)\widehat y - {{\widehat x} \over 2}} \right]$$
D
$${\sigma \over {2{ \in _0}}}\left[ {\left( {1 - {{\sqrt 3 } \over 2}} \right)\widehat y - {{\widehat x} \over 2}} \right]$$
3
JEE Main 2019 (Online) 12th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let a total charge 2Q be distributed in a sphere of radius R, with the charge density given by $$\rho $$(r) = kr, where r is the distance from the centre. Two charges A and B, of –Q each, are placed on diametrically opposite points, at equal distance, $$a$$ from the centre. If A and B do not experience any force, then :
A
$$a = {8^{ - 1/4}}R$$
B
$$a = {2^{ - 1/4}}R$$
C
$$a = {{3R} \over {{2^{1/4}}}}$$
D
$$a = {R \over {\sqrt 3 }}$$
4
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
A point dipole $$\overrightarrow p = - {p_0}\widehat x$$ is kept at the origin. The potential and electric field due to this dipole on the y-axis at a distance d are, respectively: (Take V= 0 at infinity)
A
$${{\left| {\overrightarrow p } \right|} \over {4\pi { \in _0}{d^2}}},{{ - \overrightarrow p } \over {4\pi { \in _0}{d^3}}}$$
B
$$0,{{\overrightarrow p } \over {4\pi { \in _0}{d^3}}}$$
C
$${{\left| {\overrightarrow p } \right|} \over {4\pi { \in _0}{d^2}}},{{\overrightarrow p } \over {4\pi { \in _0}{d^3}}}$$
D
$$0,{{ - \overrightarrow p } \over {4\pi { \in _0}{d^3}}}$$
JEE Main Subjects
EXAM MAP