The number of real solutions of the equation $${e^{4x}} + 4{e^{3x}} - 58{e^{2x}} + 4{e^x} + 1 = 0$$ is ___________.
Let $$\alpha$$, $$\beta$$ be the roots of the equation $${x^2} - 4\lambda x + 5 = 0$$ and $$\alpha$$, $$\gamma$$ be the roots of the equation $${x^2} - \left( {3\sqrt 2 + 2\sqrt 3 } \right)x + 7 + 3\lambda \sqrt 3 = 0$$, $$\lambda$$ > 0. If $$\beta + \gamma = 3\sqrt 2 $$, then $${(\alpha + 2\beta + \gamma )^2}$$ is equal to __________.
If the sum of all the roots of the equation
$${e^{2x}} - 11{e^x} - 45{e^{ - x}} + {{81} \over 2} = 0$$ is $${\log _e}p$$, then p is equal to ____________.
Let p and q be two real numbers such that p + q = 3 and p4 + q4 = 369. Then $${\left( {{1 \over p} + {1 \over q}} \right)^{ - 2}}$$ is equal to _________.