1
JEE Main 2023 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language
If the value of real number $a>0$ for which $x^2-5 a x+1=0$ and $x^2-a x-5=0$

have a common real root is $\frac{3}{\sqrt{2 \beta}}$ then $\beta$ is equal to ___________.
Your input ____
2
JEE Main 2023 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

Let $$\alpha_1,\alpha_2,....,\alpha_7$$ be the roots of the equation $${x^7} + 3{x^5} - 13{x^3} - 15x = 0$$ and $$|{\alpha _1}| \ge |{\alpha _2}| \ge \,...\, \ge \,|{\alpha _7}|$$. Then $$\alpha_1\alpha_2-\alpha_3\alpha_4+\alpha_5\alpha_6$$ is equal to _________.

Your input ____
3
JEE Main 2023 (Online) 25th January Evening Shift
Numerical
+4
-1
Change Language

Let $$\alpha \in\mathbb{R}$$ and let $$\alpha,\beta$$ be the roots of the equation $${x^2} + {60^{{1 \over 4}}}x + a = 0$$. If $${\alpha ^4} + {\beta ^4} = - 30$$, then the product of all possible values of $$a$$ is ____________.

Your input ____
4
JEE Main 2023 (Online) 25th January Morning Shift
Numerical
+4
-1
Change Language

Let $$S = \left\{ {\alpha :{{\log }_2}({9^{2\alpha - 4}} + 13) - {{\log }_2}\left( {{5 \over 2}.\,{3^{2\alpha - 4}} + 1} \right) = 2} \right\}$$. Then the maximum value of $$\beta$$ for which the equation $${x^2} - 2{\left( {\sum\limits_{\alpha \in s} \alpha } \right)^2}x + \sum\limits_{\alpha \in s} {{{(\alpha + 1)}^2}\beta = 0} $$ has real roots, is ____________.

Your input ____
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET